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Introduction

To set the stage, we begin by fixing relevant terminology; throughout these notes all
groups are assumed to be finitely generated and residually finite (that is, every group
element survives in a finite quotient). Under this assumption, a group G embeds in

its profinite completion Ĝ, and Ĝ is a totally disconnected, compact and Hausdorff
topological group. We use C as a generic notation for a class of groups (e.g. the class
of all hyperbolic, finite-volume 3-manifold groups) of finitely generated, residually
finite groups.

Definition 0.1. Let G be a finitely generated, residually finite group. The (profinite)
genus of G is the collection

g(G) = {H| H is finitely generated, residually finite and Ĥ ∼= Ĝ}.
Similarly, the C-genus of G is given by

gC(G) = {H ∈ C| H is finitely generated, residually finite and Ĥ ∼= Ĝ}.
We say that G is

(1) (absolutely) profinitely rigid, if g(G) = {G};
(2) almost profinitely rigid, if #g(G) <∞;
(3) profinitely rigid within (alternatively among, in etc.,) C if gC(G) = {G};
(4) almost profinitely rigid within C if #gC(G) <∞.

Another useful notion is the following:

Definition 0.2. A property P is a profinite invariant (or, a profinite property) if for
every finitely generated, residually finite group G and every H ∈ g(G), G has P if
and only if H does. We say that P is a profinite invariant within the class C if for
every G ∈ C and H ∈ gC(G), G has P if and only if H has P.

The biggest question in the field of profinite rigidity is the following question of
Remeslennikov:

Question 0.3. Let G be a finitely generated, residually finite group such that Ĝ is a
non-abelian free profinite group. Does it follow that G is a free group?
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2 JONATHAN FRUCHTER

Many of the results we mention and prove in the series are closely intertwined with
this question; as a matter of fact, the second talk will be devoted entirely to this
question. The first talk that we give will be a general overview of the field of profinite
rigidity. Lastly, the third talk will focus on a specific aspect of the study of profinite
groups: profinite Bass-Serre theory.

1. Overview: classics, important theorems and open questions

An ”early form” of profinite rigidity is the following lemma (often referred to as
Dixon’s theorem); in fact, it has become so standard that people commonly say that
G is profinitely rigid if there is no other finitely generated, residually finite group with
the same set of (isomorphism types) finite quotients as that of G. We fix the following
notation:

Notation 1.1. For a group G, denote by F (G) the set of (isomorphism types) of
finite quotients of G.

Lemma 1.2 ( [DFPR82, Main Theorem]). Let G and H be finitely generated, resid-

ually finite groups. Then Ĝ ∼= Ĥ if and only if F (G) = F (H).

Proof. The implication =⇒ is clear; suppose if so that F (G) = F (Ĝ) = F (Ĥ) =

F (H). Let Ĝn be the intersection of all finite-index normal subgroups of Ĝ of index

at most n, denote G ≥ Gn = Ĝn ∩ G and define Ĥn and Hn similarly. Note that
Gn (respectively, Ĝn) is normal in G (respectively, Ĝ); in fact, Gn is a characteristic
subgroup of G. In addition, since G is finitely generated, for every k there are finitely
many subgroups of G of index k (as these correspond to homomorphisms G → Sk).
It follows that Gn is the intersection of finitely many finite-index subgroups of G,
and [G : Gn] < ∞. Lastly, note that the inverse system given by the Gn’s is cofinal,

meaning that Ĝ = lim←−G/Gn.

We next observe that G/Gn can be characterized as the (unique) largest finite
quotient Q of G satisfying the following property: the intersection of all normal
subgroups of Q of index ≤ n is trivial. Indeed, the intersection of the preimages of all
such subgroups is exactly Gn, so Gn is killed in every such quotient Q. Since F (G) =
F (H), all that remains to do is construct an isomorphism of inverse systems between
(G, {Gn}) and (H, {Hn}). This amounts to finding maps fn : G/Gn → H/Hn that
preserve the structure of the inverse systems.

We construct such maps implicitly, by defining a new inverse system and taking
its limit. For every n, let An be the collection of all isomorphisms G/n→ H/n. Let
gn ∈ An and m ≤ n; since gn is an isomorphism, it must map the image of Gm in
G/Gn (that is, Gm/Gn) to Hm/Hn. Therefore gn gives rise to a quotient map

hn,m : (G/Gn)/(Gm/Gn) = G/Gm → (H/Hn)/(Hm/Hn) = H/Hm

such that the collection ({An}, {hn,m}) is an inverse system. Any element (fn) in its
inverse limit gives the desired isomorphism f = (fn) : lim←−G/Gn → lim←−H/Hn. □

1.1. Basic profinite properties, examples and open questions. In Lukas Schnei-
der’s talk we saw that finitely generated abelian groups are (absolutely) profinitely
rigid, that the abelianization of a group is a profinite invariant, and that being
profinitely rigid is not preserved by going to finite-index overgroups (or subgroups).
We highlight the following more general phenomenon:



WORKSHOP: PROFINITE RIGIDITY AT KIT 3

Remark 1.3. Suppose that a group G satisfies a law (that is, there exists a word w
in a free group F , such that for every tuple of elements g from G, w(g) = 1). Then
every H ∈ g(G) satisfies the same law.

Example 1.4. One example of a law is being nilpotent of height n. It follows that
being nilpotent (and more specifically, nilpotent of a certain height) is a profinite
invariant.

Recall that there is a correspondence between the finite-index subgroups of G and
Ĝ, given by (draw diag)

H ≤ G 7→ H ≤ Ĝ

F ≤ Ĝ 7→ F ∩G.

This implies that the collection of abelianizations, its free and torsion parts, and
their ”filtered” counterparts (e.g. the collection of pairs (T, n) where T is the torsion
part of Hab and H is a subgroup of G of index n) are profinite invariants.

Remark 1.5. Looking at the (torsion part of the) abelianization of finite-index sub-
groups is the most common computational methods used to distinguish groups profinitely,
see for example the supplemental code to [BMRS20], as well as [Gar19]. In a forth-
coming paper, Ascari and the author prove that finitely generated groups acting freely
on R-trees are profinitely rigid within the class of residually free groups, by showing
that every limit group that does not admit a free action on an R-tree has a finite-index
subgroup with torsion in its abelianization.

This also suggests that (when Lück’s approximation Theorem applies) the first
ℓ2-Betti number is a profinite invariant, as we will see in Sruthy Joseph’s talk. In
general, ”most” properties are not profinite invaraiants, and the examples often come
from the realm of arithmetic groups. Some non-invariant properties are:

(1) Amenability [KS23],
(2) Property (T ) [Aka12],
(3) Property FA [CWLRS22] (and more generally, [Bri23] for the higher-dimensional

generalization of fixed points for actions on d-dimensional CAT(0) spaces),
(4) Having vanishing second bounded (real) cohomology [EK23]

We conclude the discussion with two (important and difficult) open questions:

Question 1.6. Is the rank d(G) of a group G (that is, the minimal size of a generating
set) a profinite invariant?

Contrary to property FA not being a profinite property, the following is still open:

Question 1.7. Is one-endedness a profinite invariant?

1.2. Key results. One of the earliest profinite rigidity results is the following gener-
alization of the fact that finitely generated abelian groups are profinitely rigid:

Theorem 1.8 ( [Pic71, Main Theorem]). Let G be a finitely generated nilpotent group;
then G is almost profinitely rigid.

Remark 1.9. Note that every finitely generated nilpotent group is residually finite by
a classical theorem of Hirsch’s. In addition,

(1) As already discussed, nilpotency is a profinite invariant; therefore, Pickel’s
result is originally stated only for finitely generated nilpotent groups.

(2) Pickel’s proof goes through proving that if G and H are finitely generated

nilpotent groups with Ĝ ∼= Ĥ, then their torsion subgroups t(G) and t(H)
are isomorphic; furthermore, F (G/t(G)) = F (H/t(H)).
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Remark 1.10. Recently, a different kind of generalization of the fact that finitely
generated abelian groups are profinitely rigid emerged in the form of affine Coxeter
groups, see more in [CHMV24] and independently [PS24].

For a long time, these have been the only examples of (almost) profinitely rigid
groups; a few years ago, Bridson, McReynolds, Reid and Spietler proved the following
breakthrough, which were the first examples of profinitely rigid groups containing
non-abelian free groups:

Theorem 1.11 ( [BMRS20, Theorems 7.1 and 9.1]). The group PSL(2,Z[ω]), where
ω is a third root of unity, is profinitely rigid; the fundamental group of the Weeks
manifold (the closed, hyperbolic 3-manifold of minimal volume) is profinitely rigid.

Remark 1.12. The above set of authors gave further examples of profinitely rigid
groups, this time in the form of Fuchsian triangle groups [BMRS21].

The strategy behind the proof of these theorems, can be summarized as follows:

(1) The authors study lattices Γ in PSL(2,C) that have very few irreducible
representations into SL(2,C) (up to conjugation).

(2) Then, the representations of Γ into SL(2,C) are used to construct represen-

tations Ĝ→ mathrmSL(2,Qp) (here Qp is the algebraic closure of the p-adic
rationals).

(3) Now, if Λ is a finitely generated, residually finite group with the same profinite

completion as that of Γ, Λ̂ admits the same representations intomathrmSL(2,Qp).
(4) Restricting these representations to Λ, the next step is to force the image of

λ to live inside (a finite extension of) that of Γ.
(5) Using ”3-dimensional” arguments, they show that the map Λ → Γ must be

surjective. Considering the induced morphism on profinite completions, and
using the Hopf property (that will be discussed in the next lecture) finished
the proof.

Unfortunately, these result subsume almost all known examples of absolutely profinitely
rigid groups; other known examples utilize mostly techniques inspired by the works
above (see, for example, [CW22]).

Another significant recent breakthrough, is due to Andrei Jaikin-Zapirain; this is
the only result that tells us something concrete about groups lying in g(F ), where F
is a non-abelian free group:

Theorem 1.13 ( [JZ23, Theorem 1.1]). Let G ∈ g(F ), where F is a non-abelian free
group. Then G is residually-p for every prime p, and G is parafree (meaning that
G/γn(G) ∼= F/γn(F ) for every n).

Jaikin-Zapirain’s proof is very algebraic in nature, and relies on utilizing a universal
ring that encodes all the representations of the group, and computing its dimension
in two ways.

The last result that we bring forth, is Grothendieck’s original question about profi-
nite completions:

Question 1.14 (Grothendieck’s question, 1970). Given two finitely presented, resid-

ually finite groups G and H, and a homomorphism f : G→ H such that f̂ : Ĝ→ Ĥ
is an isomorphism. Must f be an isomorphism?

Remark 1.15. A Grothendieck pair is a pair of groups H ≤ G such that the inclusion
map i : H → G induces an isomorphism of profinite completions. If G does not admit
such a subgroup H, G is called Grothendieck rigid.
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Progress towards solving Grothendieck’s problem was first made by Platonov and
Tavgen [PT86], where they proved that a direct product of two free groups F2×F2 has
a finitely generated subgroup G, such that G ≤ F2 × F2 is a Grothendieck pair. We
remark that there are infinitely many such subgroups of F@ × F2, but none of them
is finitely presented (this follows, for example, from the fact that finitely presented
subgroups of residually free groups are separable [BW07]). Bridson and Grunewald
managed to overcome this problem by utilizing the Rips Construction, producing
hyperbolic groups with a desired quotient.

Remark 1.16. It is worth mentioning that by [FM24], direct products of free, surface
and free abelian groups are profinitely rigid within finitely presented, residually free
groups; note that the examples of Platonov and Tavgen are all residually free, as they
are subgroups of F2 × F2.

Theorem 1.17 ( [BG04, Theorem 1.1]). There exist hyperbolic groups G such that
G×G admits a finitely presented subgroup H, and such that the inclusion H ↪→ G×G
induces an isomorphism of profinite completions.

We conclude by giving a partial proof (namely, the easy part of the proof) of
Platonov’s and Tavgen’s result:

Lemma 1.18. F2 × F2 has a finitely generated subgroup H of infinite index, which
is dense in the profinite topology.

Proof. The construction of H presented below relies on the existence of a 2-generated,
finitely presented, infinite simple group (as a side note, we remark that there are no
known examples of d-generated finitely presented, infinite simple groups for d > 2).
In fact, we will explicitly use Thompson’s group V , which is one of the most famous
examples of infinite simple groups, and which admits a finite presentation with two
generators u and v and 7 relations. We remark that it is enough to use a group that
admits a finite presentation on 2 generators that is not simple, but has no finite-index
subgroups.

Fix an epimorphism f : F2 ↠ V and let H be the corresponding fibre product,
that is

H = {(g, h) ∈ F2 × F2|f(g) = f(h)}.
Since V is finitely presented, H is finitely generated [BR84, Lemma 2], and H is easily
seen to be of infinite index since V is infinite. Finally, to show that H is profinitely
dense in F2×F2, it is enough to show that it is not contained in a proper finite index
subgroup G of F2×F2. Indeed, if it were contained in such G, then G/(ker f × ker f)
would be a proper finite index subgroup of V × V , but these do not exist since V is
simple. □

We conclude the discussion by mentioning that recently, Bridson, Reid and Spietler
gave an example of a group G such that G × G is not profinitely rigid, but it is
profinitely rigid within the class of finitely presented groups [BRS23].

2. Remeslennikov’s question

The nature of this talk is more topological/geometric than the previous one; the
main theme is detecting a desired topological/geometric property, and translating it
into an algebraic property that can be seen by the profinite completion.

The biggest question in the field of profinite rigidity (which, for the untrained eye
looks like a first-year algebra exercise), is Remeslennikov’s question:
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Question 2.1 (Remeslennikov’s question). Is a finitely generated, non-abelian free
group F profinitely rigid?

As a first exercise, we will show that a free group can be profinitely distinguished
from a surface group:

Example 2.2. Let F be a free group and let S be the fundamental group of a closed
surface; suppose that F̂ ∼= Ŝ. Note that S has a degree-2 cover S′ which is an
orientable surface group, and hence S′ab ∼= Z2n for some n. It follows that F has an
index 2 subgroup F ′ with the same abelianization, and it is therefore a free group of
rank 2n. By the Nielsen-Schreier formula, the rank of F ′ is 1 + 2 · (d(F ) − 1) which
is odd, contradicting our assumption.

Our next simple observation, is that every G ∈ g(F ) must satisfy d(G) > d(F ). To
prove this, we will first show that profinite groups satisfy the Hopf property, namely:

Definition 2.3. We say that a group G is Hopfian if every epimorphism G → G is
an isomorphism. We say that a topological group G is (topologically) Hopfian if every
continuous epimorphism G→ G is a homeomorphism.

First, we remark that non-abelian free groups have the Hopf property: if f : F → F
is a surjective homeomoprhism, the image of a basis of F is a generating set of size
d(F ) and therefore a basis, which implies that f is an isomorphism. Our next aim is
to show that all topologically finitely generated profinite groups have the (topological)
Hopf property:

Theorem 2.4. Let G be a topologically finitely generated profinite group. Then G
has the Hopf property.

Proof. Let f : G→ G be a surjective map; since f is surjective, for every finite-index
normal subgroup H ≤ G we have that [G : f−1(H)] = [G : H]. We deduce that
f(Gn) ≤ Gn and that Gn ≤ f−1(Gn) (for Gn as in lemma 1.2). This implies that f

descends to a map fn : Gn → Gn (the kernel of the map G
f−→ G → G/Gn contains

Gn so the map factors via the quotient G → Gn). The map fn is surjective, and
since G/Gn is finite, fn is an isomorphism. The inverse limit lim←−fn is an isomorphism

G→ G, and it coincides with f . □

We deduce the following:

Theorem 2.5 (cf. [DFPR82]). Let F be a non-abelian free group. Then for every
G ∈ g(F ), d(G) > d(F ).

Proof. We first note that if G and H are topologically finitely generated profinite
groups, and f : G→ H and f ′ : H → G are continuous surjections, then f and f ′ are
isomorphisms. Indeed, f ′ ◦ f is an epimorphism G → G, so by the Hopf property f
is injective; the opposite composition shows that f ′ is injective too. Now both maps
are continuous bijections from a compact space to a Hausdorff space, so they are
homeomorphisms.

We are now ready to prove the theorem: suppose that d(G) ≤ d(F ), so there is

an epimorphism f : F → G; this induces a continuous epimorphism f̂ : F̂ → Ĝ ∼= F̂

and by the (topological) Hopf property, f̂ is a homeomorphism. In particular, f̂ is
injective, so f is injective and G ∼= F . □

Remark 2.6. Note that the only place where we used that F is free was to obtain
an epimorphism F → G. It follows that whenever we have a group homomorphism
G→ H between two groups with the same set of finite quotients, then G ∼= H.
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It is an easy exercise to see that the above can be rephrased as follows:

Theorem 2.7. Let G be a finitely generated, residually finite group and let F be a
free group. Suppose that F (G) = F (F ), and that G has a finite quotient Q such that
d(G) = d(Q). Then G ∼= F .

2.1. Residually free groups. We continue with a relative solution of Remeslen-
nikov’s question, within the class of residually free groups (that is, groups in which
every element survives in a free quotient). The proof crucially relies on the fact
that residually free groups, except for free groups, always contain surface subgroups
(here we count Z2 as a surface subgroup). In fact, relating to Jaikin-Zapirain’s theo-
rem [JZ23], people believe that a positive answer to Remeslennikov’s question will go
through proving that parafree groups admit surface subgroups.

Theorem 2.8 (Based on [Wil18, Corollary D]). Free groups are profinitely rigid
within the class of residually free groups.

The proof relies on another theorem of Wilton’s, which states that every finitely
generated subgroup of limit groups are closed in the profinite topology in a very strong
way. We recollect the relevant definitions and lemmas before we prove Theorem 2.8
above.

Definition 2.9. A limit group L is a finitely generated, fully residually free group,
meaning that for every finite subset S ⊂ L there is a homomorphism f : L→ F where
F is a free group, such that f is injective on S.

Definition 2.10. Let G be a group. A subgroup H ≤ G is called a retract of G if
there is a homomorphism r : G→ H such that r|H is the identity on H. We say that
G virtually retracts onto H if there is a finite-index subgroup G′ ≤ G such that H is
a retract of G′.

Remark 2.11. Note that if G is residually finite, and G virtually retracts onto H,
then H is separable in G (or in other words, H is closed in the profinite topology on
G). Indeed, one easily checks that if Gi are finite-index subgroups of G such that⋂

i Gi = {1}, then H =
⋂

i(ker r ∩Gi) ·G′ (where r : G′ → H is a retraction).

Theorem 2.12 ( [Wil08, Theorem B]). Let L be a limit group and let H be a finitely
generated subgroup of L. Then L virtually retracts onto H.

The following simple observation is a crucial ingredient in the proof of Theorem
2.8, and shows that virtual retracts serve as good means for transferring data from
arbitrary subgroups to finite-index ones:

Lemma 2.13. Suppose that G virtually retracts onto its subgroup H, then G has a
finite-index subgroup G′ such that for every coefficient module R, and any n ∈ N,
Hn(H;R) ↪→ Hn(G′;R).

Proof. Let G′ be a finite-index subgroup of G that retracts onto H via r : G′ → H
and let i : H → G′ be the inclusion map. Note that r ◦ i : H → H is the identity
map. Therefore, the induced map on cohomology, i∗ ◦ r∗ : Hn(H;R)→ Hn(H;R) is
the identity map. In particular, the map i∗ : Hn(H;R)→ Hn(G′;R) is injective. □

Proof of theorem 2.8. Let G be a residually free group and suppose that Ĝ ∼= F̂ . If
G is not a limit group, it is a classical result that G contains F2 × Z as a subgroup
and therefore Z2 ≤ G. Furthermore, since Z2 and all of its subgroups are finitely
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presented, by [BW07] G induces the full profinite topology on this subgroup. Hence

Z2
= Ẑ2 is a subgroup of Ĝ, but a free profinite group does not contain such subgroup.

We deduce that G is a limit group, and therefore G contains a surface subgroup S.
There is a virtual retraction r : G′ → S, and by the previous lemma H2(G′;Z/2) ̸= 0.
As we will see in Raquel Murat’s talk, limit groups are good in the sense of Serre
which means that H2(Ĝ′;Z/2) ̸= 0. Note that Ĝ′ is a finite-index subgroup of F̂ ,

and is therefore a free profinite group. But this implies that H2(Ĝ′;Z/2) = 0, a
contradiction. □

3. Profinite trees and Bass-Serre theory

In this talk we will give a brief overview of the theory of profinite trees; the main
theorem of Bass-Serre, namely the correspondence between group splittings and ac-
tions on trees, can be carried out in the profinite setting. However, as one might
expect, some things behave less nicely in the profinite world (whereas other things
behave better). We will also prove a simple fixed-point theorem for profinite Poincaré
duality groups acting on profinite trees. We will finish by sketching the proof of two
results concerning profinite completions of 3-manifold groups: profinite detection of
hyperbolic geometry, and profinite completion of the Knesser-Milnor decomposition.

3.1. Profinite graphs and trees. Just like profinite groups are inverse limits of
finite groups, one can consider profinite spaces which are inverse limits of finite. dis-
crete spaces. We begin by defining profinite graphs. We use the following convention
when considering abstract graphs: a graph Γ is a disjoint union of two sets E ⊔ V ,
with two maps d0, d1 : Γ → V , such that d0|V = d1|V = IdV . These are interpreted
in the following way: for an edge e ∈ E, we interpret d0(e) as the initial vertex of e,
and d1(e) as the terminal vertex of e.

Definition 3.1. A profinite graph Γ is a graph such that

(1) Γ is a profinite space (that is, Γ is the inverse limit of its finite quotient
graphs),

(2) V is a closed subset of Γ,
(3) the maps d0 and d1 are continuous.

Note that we didn’t require that the set E is closed.

Example 3.2. Every finite graph is a profinite graph. We give another example of a
profinite graph: let V = N∪{∞} and let E = N, and set d0(n) = n and d1(n) = n+1.
Then Γ is the inverse limit of the graphs which are a finite path, with maps being
collapsing the last edge of the path of length n + 1 to obtain the path of length n.
Note that there is no edge connected to the vertex∞, yet this graph is still considered
connected :

Definition 3.3. A profinite graph Γ is said to be connected if it is the inverse limit
of finite, connected graphs.

This example tells us that paths have less importance in the realm of profinite
graphs than in that of abstract graphs. Therefore, it would not make sense to define
a profinite tree as a profinite graph without (reduced) loops. Instead, profinite trees
are defined by a homological condition:

Definition 3.4. A profinite graph Γ is a profinite tree if it is connected, and satisfies
H1(Γ, Ẑ) = 0 (or, equivalently, H1(Γ,Fp) = 0 for all p). In more detail, Γ is a profinite
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tree if and only if the following sequence is exact for all p:

0 −→ JFp[E
∗, ∗]K δ−→ JFp[V ]K ϵ0−→

where:

(1) (E∗, ∗) is the quotient Γ/V ,
(2) JFp[E

∗, ∗]K is the inverse limit of the pointed spaces Fp[E(Gammai), ∗] (that
is, all maps in the system send the base point to the base point),

(3) JFp[V ]K is the inverse limit of Fp[V (Γi)],
(4) the map ϵ sends the image of every v ∈ V in JFp[V ]K to 1, and
(5) the map δ sends the image of every e ∈ E in JFp[E

∗, ∗]K to d1(e)− d0(e).

Remark 3.5. One can now define:

(1) H0(Γ,Fp) = ker ϵ/imδ. Note that H0(Γ,Fp) = 0 for all p if and only if Γ is
connected.

(2) H1(Γ,Fp) = ker δ.

One easily verifies that a finite tree is a profinite tree; moreover, the inverse limit of
finite trees is always a profinite tree.

3.2. Profinite graphs of groups. Profinite graphs of groups are simply graphs
of groups where the vertex and edge groups are profinite groups, and then edge
monomorphisms are continuous maps. To define the profinite fundamental group of a
profinite graph of groups, we take two approaches: one, as a completion (not always
the profinite completion) of the abstract fundamental group, and one by a universal
property.

Definition 3.6. Let G be a profinite graph of groups. The profinite fundamental
group of G,

∏
1(G), is defined by any of the following two equivalent ways:

(1) Let N = {Ni|i ∈ I} be the collection of all normal subgroups of the abstract
fundamental group G of G, such that for every vertex gruop Gv of G, N ∩ Gv
is open in Gv. Then ∏

1

(G) = lim←−N∈NG/N.

(2)
∏

1(G) is the profinite group satisfying the same universal property as in the
abstract case, except that here we request all morphisms to be continuous.

Remark 3.7. Unlike the abstract case, in the profinite setting the vertex and edge
groups do not necessarily embed in

∏
1(G). We will be especially interested in the

profinite completion of graphs of groups. Suppose that G is a graph of abstract groups
and denote by Ĝ the graph of groups obtained by taking the profinite completion of
the vertex and edge groups. Suppose that G is efficient, that is

(1) π1(G) is residually finite,
(2) each edge and vertex group is closed in the profinite topology on π1(G), and
(3) π1(G) induces the full profinite topology on the edge and vertex groups.

Note that these conditions always hold when π1(G) is subgroup separable. In this

case, the edge groups of Ĝ do embed in the vertex groups, and moreover

π̂1(G) ∼=
∏
1

(Ĝ).
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3.3. Hierarchies and 3-manifold geometries. We seal the discussion by sketching
the proof of the following theorem, due to Wilton and Zalesskii:

Theorem 3.8 (cf. [WZ17, Theorem A]). Let M and N be two closed, orientable,

aspherical 3-manifolds with π̂1(M) ∼= π̂1(N). Then M is hyperbolic if and only if N
is hyperbolic.

Our strategy will be to show that M is hyperbolic if and only if π̂1(M) does

not contain a copy of Ẑ2. The fact that abelian subgroups of 3-manifold groups
are separable [Ham01, Theorem 1] reduces the question to showing that the profinite
completion of the fundamental group of a closed, orientable, aspherical and hyperbolic
3-manifold does not contain Ẑ2:

Lemma 3.9. Let M be the fundamental group of a non-hyperbolic, closed, orientable

and aspherical 3-manifold. Then π̂1(M) contains a copy of Ẑ2.

Proof. By Thurston’s hyperbolization theorem, π1M contains H ∼= Z2 as a subgroup.
Every finite subgroup of H is isomorphic to H, and therefore separable in π1M . It

follows that π1M induces the full profinite topology on H, and therefore H ≤ π̂1(M)

is isomorphic to Ẑ2. □

Recall that by Agol’s and Wise’s work, fundamental groups of closed, hyperbolic
3-manifolds are virtually special. This implies that in order to prove Theorem 3.8
above, it is enough to prove the following:

Theorem 3.10. Let G be a hyperbolic, torsion-free, virtually compact special group.
Then Ĝ does not contain a copy of Ẑ2.

The proof of theorem 3.10 crucially relies on two important and deep results due
to Wise and Zalesskii respecitvely. We begin by recalling a couple of definitions.

Definition 3.11. Let G be a group and let H be a subgroup. We say that H is
malnormal in G if gHg−1 ∩H = {1} for every g /∈ H.

Definition 3.12. Let G be a profinite group acting on a profinite tree T . We say
that the action is k-acylindrical if for every g ̸= 1, the set of fixed points of G in T
has diameter at most k.

The aforementioned theorems that we will use are the following:

Theorem 3.13. Every hyperbolic, virtually special group G has a finite-index sub-
group that admits a malnormal quasiconvex hierarchy: G can be built from trivial
groups by repeatedly taking HNN extensions and amalgamated products, such that
in each stage the edge groups are quasiconvex and malnormal in the amalgamated
product or HNN extension.

The second theorem is a Tits’ alternative type theorem for profinite groups acting
on profinite trees. The original statement is long and cumbersome, and we therefore
state it for profinite groups acting 1-acylindrically on profinite trees (this is the case
with splittings coming from the quasiconvex malnormal hierarchy mentioned above):

Theorem 3.14. Let G be a torsion-free profinite group admitting a 1-acylindrical
action on a profinite tree T . Then one of the following holds:

• G contains a non-abelian free pro-p subgroup for some p;
• G stabilizes a vertex;
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• G ∼=
∏

p∈P1
Zp ⋊

∏
p∈P2

Zp for disjoint sets of primes P1 and P2.

We will also use the following lemma from Wilton’s and Zalesskii’s paper:

Lemma 3.15. Let G be a compact virtually special hyperbolic group and let H be a
quasiconvex, malnormal subgroup of G. Then the closure H of H in Ĝ is isomorphic
to Ĥ and it is malnormal in Ĝ.

We are ready to prove Theorem 3.10.

Proof of Theorem 3.10. Let G0 be a finite-index subgroup of G that admits a mal-
normal hierarchy, and let H be a subgroup of Ĝ. Let H0 = H ∩ G0 and note that
H0 is a finite-index subgroup of H. Therefore, it is enough to show that H0 is not
isomorphic to Ẑ2.

If H0 contains a non-abelian free pro-p, then we are done. Otherwise, we will
prove that H0

∼=
∏

p∈P1
Zp ⋊

∏
p∈P2

Zp. We do so by induction on the height of the
hierarchy. Note that the quasiconvex malnormal splitting of H0∩G lifts to a profinite
malnormal splitting of H0. We first prove that the action of H0 on the profinite tree
T corresponding to this splitting is 1-acylindrical.

Since the splitting of H0 has a single edge with edge group C, it is enough to show
that the stabilizers of any two distinct edges have a trivial intersection. But such an
intersection has the form gCg−1 ∩ hCh−1 and must be trivial since C is malnormal
in H by the previous lemma. Hence the action of H0 on T is 1-acylindrical.

Now, recall the Tits’ alternative theorem for such actions. We assume that H0

does not contain a non-abelian free pro-p subgroup, and we are left with two options:

(1) H0 fixes a vertex, in which case it is contained in a group with a strictly
shorter hierarchy, and we are done by the induction hypotheses.

(2) H0
∼=

∏
p∈P1

Zp ⋊
∏

p∈P2
Zp, which completes the proof.

□
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